Inorganic and Organometallic Chemistry
Research Statement
Our research group is concerned with synthesis, structure and mechanism in inorganic and organometallic systems. We are interested in the preparation and study of new organometallic compounds which pose significant questions of structure and bonding, or which are designed to exhibit unusual reactivity in chemical transformations. We are also developing new synthetic routes to inorganic and organometallic polymers. General areas of interest are described below:
Metal Complexes of Unsaturated Main Group Ligands Metal complexes of silicon analogs of common carbon-based ligands such as silylenes and sila-olefins have only recently been prepared and remain quite rare, despite their proposed role in metal-catalyzed transformations at silicon and potential utility in the selective formation of silicon-based polymers. The synthesis and properties of metal complexes of unsaturated silicon compounds such as silenes (R2Si = CR2), disilenes (R2Si = SiR2) and silanimines (R2Si=NR) is an active area of investigation. We have recently synthesized and structurally characterized examples of each of the previous complexes. The reactions of these complexes with a range of organic and inorganic reagents yield interesting products, and provide further insight into the role of such species in catalytic reactions.
Metal-Catalyzed Reactions in Organosilicon Chemistry
Unsaturated silicon complexes are also important intermediates in new catalytic reactions of organosilicon compounds, including new routes to organosilicon polymers. Silene complexes generated by beta-hydrogen elimination from metal silyls are the key intermediates in the first catalytic dehydrogenative coupling of alkyl silanes directly to oligomeric and polymeric carbosilanes, H(SiR2CR2)nSiR3. Polycarbosilanes are the most successful and widely studied class of polymer precursors for silicon carbide, but traditional methods for their synthesis are inefficient and nonselective. This research effort is currently focused on the detailed elucidation of the catalytic mechanism, the development of more active catalyst systems, and the extension of this new route to other classes of inorganic polymers. Other processes under investigation include the late metal-catalyzed redistribution and dehydrocoupling of silanes to polysilanes, and catalytic C-H bond activation and functionalization with organosilicon and other main group element groups.
Highest Occupied Molecular Orbital of Cp2W(η2-Me2Si=SiMe2)
- S.B. Massachusetts Institute of Technology (1979)
- Ph.D. California Institute of Technology (1984)
- Research Associate, University of Rochester (1985)
- Alfred P. Sloan Research Fellow (1990)
- Chair, Chemistry Undergraduate Committee (2000- )
"Evidence for Ligand Non-Innocence in a Formally Ruthenium(I) Hydride Complex," Noah L. Wieder, Michelle Gallagher, Patrick J. Carroll, and Donald H. Berry* J. Am. Chem. Soc. 2010, 132, 4107-4109.
"Low-Valent Ruthenium Complexes of the Non-innocent 2,6-Bis(imino)pyridine Ligand" Michelle Gallagher, Noah L. Wieder, Vladimir K. Dioumaev, Patrick J. Carroll, and Donald H. Berry* Organometallics, 2010, 29,591-603.
D. A. Ruddy, D. H. Berry, and C. Nataro, “Synthesis and characterization of 1-methyl-1-silaindane and 1-methyl-1-germaindane,” J. Organomet. Chem. 2008, 693, 169-172.
H. Yoo, P. J. Carroll, and D. H. Berry, “Synthesis and Structure of Ruthenium-Silylene Complexes: Activation of Si-Cl Bonds in N-Heterocyclic Silanes,” J. Amer. Chem. Soc. 2006, 128, 6038-6039.
Y. Huo and D. H. Berry, "Synthesis and Properties of Hybrid Organic-Inorganic Materials Containing Covalently Bonded Luminescent Polygermanes," Chem. Mat., 2005, 17, 157-163.
B. Arkles, Y. Pan, G.L. Larson, and D. H. Berry, "Cyclic Azasilanes: Volatile Coupling Agents for Nanotechnology," Silanes and Other Coupling Agents, Vol 3, K.L. Mittal, ed. 2004,.
V. K. Dioumaev, L. J. Procopio, P. J. Carroll, and D. H. Berry, "Synthesis and Reactivity of Silyl Ruthenium Complexes: The Importance of Trans Effects in C-H Activation, Si-C Bond Formation, and Dehydrogenative Coupling of Silanes," J. Am. Chem. Soc. 2003, 125, 8043-8058.
V. K. Dioumaev, B. R. Yoo, P. J. Carroll, and D. H. Berry "Structure and Reactivity of Bis(Silyl) Dihydride Complexes (PMe3)3Ru(SiR3)2H2: Model Compounds and Real Intermediates in a Dehydrogenative C-Si Bond Forming Reactions," J. Am. Chem. Soc. 2003, 125, 8936-8948.
V. K. Dioumaev, P. J. Carroll, and D. H. Berry "Tandem ?-CH Activation / SiH Elimination Reactions: Stabilization of CH Activation Products by beta-Agostic SiH Interactions, " Angew. Chem. Int. Ed. Engl. 2003, 42, 3947-3949.
M. Motonaga, H. Nakashima, S. M. Katz, D. H. Berry, T. Imase, S. Kawauchi, M. Fujiki, and J. R. Koe, "The First Optically Active Polygermanes: Preferential Screw Sense Helicity of Enantiopure Chiral-substituted Aryl Polygermanes and Comparison with Analogous Polysilanes," J. Organomet. Chem. 2003, 685, 44-50.
K. A. Ezbiansky, D. H. Berry, B. Arkles, and R. J. Composto, Fluoride-Catalyzed Conversion of b-AcetoxyEthyl-Silsesquioxane: a Chloride-Free Pre-cursor for Silica Films", Polym. Prepr., 2001, 42, 101-102.
K. A. Ezbiansky, B. Arkles, R. J. Composto, and D. H. Berry, "b-Acetoxyethyl Silsesquioxanes: Chloride-Free Pre-cursors For SiO2 Films Via Staged Hydrolysis," Mater. Res. Soc. Symp. Proc., 2000, 606, 251-256.
V. K. Dioumaev, K. Plössl, P. J. Carroll, and D. H. Berry, "Access to Unsaturated Ruthenium Complexes via Phosphine Complexation with Triphenylborane; Synthesis and Structure of a Zwitterionic Arene Complex, (h6-Ph-BPh2H) Ru(PMe3)2(SiMe3).", Organometallics, 2000, 19, 3374-3378.
V. K. Dioumaev, K. Plössl, and D. H. Berry, "Formation and Interconversion of Ruthenium-Silene and 16-Electron Ruthenium Silyl Complexes," J. Am. Chem. Soc., 1999, 121, 8391-8392.
J. A. Reichl and D. H. Berry "Recent Progress in Transition Metal-Catalyzed Reactions of the Silicon, Germanium, and Tin," Adv. in Organomet. Chem., 1999, 43, 197-265.
K. A. Ezbiansky, P. I. Djurovich, M. LaForest, D. J. Sinning, R. Zayes, and D. H. Berry, "Catalytic C-H Bond Functionalization: Synthesis of Aryl-silanes by Dehydrogenative Transfer Coupling of Arenes and Triethylsilane," Organometallics, 1998, 17, 1455-1457.
S. M. Katz, J. A. Reichl, and D. H. Berry, "Catalytic Synthesis of Poly-(arylmethylgermanes) by Demethanative Coupling: A Mild Route to s-Conjugated Polymers," J. Am. Chem. Soc., 1998, 120, 9844-9855.
L. J. Procopio, P. J. Carroll, and D. H. Berry, "Structure and Reactivity of Cp2Zr(h2-Me2Si=NtBu)(CO): An Unusual Silanimine Carbonyl Complex with Extensive s-p* Back-Bonding," Polyhedron, 1995, 14, 45-55.