Christopher B. Murray

Christopher B. Murray

Richard Perry University Professor of Chemistry and Materials Science and Engineering

(215) 898-0588

347N (Chem 73) and 302 (LRSM) MSE

Website

Nanoscale and Inorganic Materials Chemistry

Education
  • 1985-1988 B.Sc. Honors Chemistry, Summa cum Laude, St. Mary's University, Halifax N.S., Canada
  • 1989 Rotary International Fellow, University of Auckland, New Zealand
  • 1990-1995 Ph.D. Physical Chemistry, Massachusetts Institute of Technology, Cambridge, MA
  • 1995- 2000 Member of research staff, IBM Corp., T. J. Watson Research Center. Established a program in the preparation and characterization of nanomaterials and devices.
  • 2000 - 2006 Manager of the Nanoscale materials and devices department leading development of nanomaterials and exploring self-organizing phenomena for applications in IT.
  • 2007- University of Pennsylvania: Richard Perry University Professor of Chemistry and Materials Science and Engineering.
Research Interests

Our research focuses on Materials Chemistry with full participation in both the departments of Chemistry in the School of Arts and Sciences (SAS) and in the Department of Materials Science and Engineering in the School of of Engineering and Applied Sciences (SEAS).

 

Many collective phenomena in inorganic materials have natural length scales between 1 and 50 nm. Thus size control nanometer sized crystals or "nanocrystals" allows materials properties to be engineered. Nanocrystals display new mesoscopic phenomena found in neither bulk nor molecular systems. For example, the electronic, optical and magnetic properties semiconductors and magnetic nanocrystals strongly depend on crystallite size. Excited by the potential of these nanocrystal materials our mode of operation has been to develop leading synthetic methods and to push the resulting materials toward technology demonstrations. We try to blend the perspective of academic chemistry and materials science with technological perspective that I developed in over a decade of work in industrial research. We hope this mix of influences will help to align opportunities for applications with broader understanding of nanomaterials. Materials chemistry that embraces and harnesses these principles of self-assembly is at the frontier of materials science and become one of its cornerstones within our generation. Key challenges to the advance of this field will be met by advancing synthetic design, improved analytical tools and perhaps through forethought of environmental health and safety issues. Share in efforts to meet these challenges and thus influence the evolution of both materials science and chemistry. 

Affiliations